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Abstract

In this paper, we present a new upwind finite difference scheme for meshless solvers. This new scheme, capable of

working on any type of grid (structure, unstructured or even a random distribution of points) produces superior results.

A means to construct schemes of specified order of accuracy is discussed. Numerical computations for different types of

flow over a wide range of Mach numbers are presented. Also, these results were compared with those obtained using a

cell vertex finite volume code on the same grids and with theoretical values wherever possible. The present framework

has the flexibility to choose between various upwind flux formulas.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

One of the major difficulties in the computation of flows involving complex real life configuration is grid

generation. In the past 10 years remarkable progress has been made both in terms of grid generation

techniques and flow solvers which would alleviate this problem. The successful use of adaptive unstructured

and Cartesian mesh calculations can be cited as examples in this regard. Though the computational effort

involved in such calculations is considerably more compared to the routine structured mesh calculations,

the ever increasing speed of the computers has made these computations more realistic. One other class of

methods called the �Grid-free methods� also address the question of computation of flow past complex
configurations. All these methods require, to approximate derivatives at any given node, is the information
at a cloud of grid points around that node. This set of grid points can be generated using any means;

structured, unstructured or cartesian mesh generator and hence the name ‘‘Grid-free method.’’

In the past two decades considerable amount of research has been carried out in this area, popularly

referred to as ‘‘Gridless CFD’’ [17]. One of the earliest work pertains to the paper on ‘‘Generalized

finite difference method’’ by Chung [10]. The fundamental idea explored in this work related to the use

of Taylor series expansion for obtaining the discrete approximation to the derivatives at any given
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point has not undergone any change. On the other hand at the implementation level significant

modifications have been experimented with, leading to the success/failure of the aforesaid procedure. As

example we can cite the work of Deshpande et al. [11] and Batina [8]. Both employ a least-squares

procedure for solving the resulting over determined system of equations in contrast to the work of

Chung [10], where a stencil of grid points just adequate to solve for the derivatives appearing in the

truncated Taylor series is employed. While the work of Deshpande et al. [11] deals with an upwind

implementation based on Kinetics Theory of Gases, resulting in least-squares kinetic upwind method

(LSKUM) [12], that of Batina [8] is based on a centered scheme using artificial dissipation. In this
paper, we present a new Least-Squares-based Upwind Finite Difference method [2,5,6], referred to as

LSFD-U. The new method unlike the LSKUM which makes use of one-sided upwind stencil of grid

points uses a global stencil of grid points. The fact that the present upwind method employs a global

stencil of grid points can be considered as one of the most important advantages in comparison to

LSKUM. Also, the present method has the flexibility to choose between different flux formulas like Roe

[26], van Leer [29], KFVS [18], AUSM [19], etc. The other interesting development in this area is due to

Morinishi [20,21] and L€oohner et. al [25]. They have used ‘‘weighted least-squares’’ approach to find the
derivatives at a node. Though the use of a mid-point between a given node and its neighbour to de-
termine an upwind flux is similar to the strategy presented in this work, the effective upwind direction is

arbitrary. In present work, the upwinding is done along each ray joining the node and its neighbour. In

[21] it is remarked that it is difficult to prove the order of accuracy of such schemes. On the contrary in

this paper we present a means to construct schemes of specified order of accuracy. Based on the de-

velopment in LSFD-U, a new kinetic theory-based scheme employing a global stencil of grid points has

also been developed. An interested reader is referred to [24]. Other methods outside the realm of finite

difference method, for fluid flow computations, are reproducing kernel particle method (RKPM) due to

Liu et al. [31] and meshless local Petrov–Galerkin (MLPG) due to Atluri [16]. The RKPM is also a
meshless particle (Lagrangian) method like cubic interpolation with volume/area co-ordinates (CIVA)

due to Tanaka [23]. The CIVA uses cubic interpolation pseudo-particle (CIP) algorithm to obtain high

accuracy.

In Section 2 a general introduction to a least-squares-based update procedure is presented, followed by a

discussion on its upwind implementation in Section 3. The LSFD-U procedure is introduced in Section 4.

Its implementation in 2D, order of accuracy and its variants are presented in Section 5. The results obtained

using LSFD-U procedure and its variants for a wide range of Mach numbers are discussed in Section 6, as

well as the comparison with results obtained using cell vertex finite volume procedure.
2. Least-squares-based update procedure for fluid flow problems

Consider the 2D Euler equation of gas dynamics

oU

ot
þ of

ox
þ og

oy
¼ 0; ð1Þ

where U is the vector of conserved variables given by U ¼ ½ q qu qv e �T, f and g represent the fluxes in
the x and y co-ordinate directions, respectively. The fluxes f and g are given by

f ¼ ½ qu qu2 þ p quv ðeþ pÞu �T and g ¼ ½ qv quv qv2 þ p ðeþ pÞv �T. 1 In the above expressions q,
u, v and p stand for density, x and y components of the fluid velocity and pressure, respectively. They are
related to the energy per unit volume through the relation e ¼ p=ðc � 1Þ þ ðqðu2 þ v2Þ=2Þ. We seek to solve
1 Throughout this paper, we use f and g to represent the flux vectors and f and g their components, respectively.
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the Euler equations numerically using the method of least squares. In this section we introduce the least-

squares procedure and in the subsequent sections discuss the upwind implementation of the least-squares

procedure.

The least-squares finite difference update formula operates on a cluster of grid points. A typical 2D

cluster of grid points is shown in Fig. 1. The state update at the point o using a suitable time integration

procedure, requires the values of fx and gy at that point. We demonstrate the least-squares procedure

employed in approximating the flux derivatives at o by introducing an arbitrary function /ðx; yÞ, the dis-
crete values of which are available at the nodes. The function value in the neighborhood of o (say at node i)
can be estimated using a truncated Taylor series

/i ¼ /o þ
Xl
q¼1

Xq
m¼0

q
m

� �
Dxq�mi Dymi

q!
oq/

oxq�m oym
; ð2Þ

with Dð�Þi ¼ ð�Þi � ð�Þ0. Let n represent the number of neighbors of o. Eq. (2), for n > lðlþ 3Þ=2, represents
an over-determined system of equations, the solution of which can be determined using the method of least

squares. The aforesaid system of equations can be represented in matrix form as

Ad ¼ b: ð3Þ

While d and b represent vectors of dimension lðlþ 3Þ=2 and n, respectively, A represents ðn	 ðlðlþ 3Þ=2ÞÞ
matrix. The elements of A and d can be built from the following vectors, defined for a given q,

aiq ¼ Dxqi
q!

Dxq�1i
q! Dyi . . .

Dyqi
q!

h i
;

dq ¼ oq/
oxq q oq/

oxq�1 oy
qðq�1Þ
2

oq/
oxq�2 oy2 . . . oq/

oyq

h iT
o
:

ð4Þ

The ith component of vector b is given by bi ¼ D/i. The components of d, i.e., the derivatives of / at node o
are obtained by minimizing the Euclidean norm of the error vector E, the ith element of which is defined as

Ei ¼ D/i �
Xl
q¼1

Xq
m¼0

q
m

� �
Dxq�mi Dymi

q!
oq/

oxq�m oym
: ð5Þ

This is equivalent to solving the least-squares problem

ATAd ¼ ATb: ð6Þ
Fig. 1. Typical 2D cluster of grid points.
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Because of the fact that the elements of A are generated by making use of a polynomial basis, the rank of A

is lðlþ 3Þ=2. Therefore, in general, ATA is nonsingular and the solution to the least-squares problem is
unique [14]. Though ATA is a nonsingular matrix, a practical implementation of the aforesaid procedure

should involve calculation of its condition number. This can be done at a preprocessing stage, because ATA

is purely a geometric matrix. A general guiding principle for circumventing the ill-conditioning of ATA is to

use a stencil of grid points sufficiently larger than the number of unknowns involved in the least-squares

procedure. Care should be taken that too large a stencil may smear the local gradients, while a stencil that

just satisfies the mathematical requirement may result in the ill-conditioning of ATA. More discussions on
the preprocessor to be used in the least-squares procedure are presented in Section 6.1.

The accuracy of the least-squares procedure is stated in the following theorem, the proof of which is

straight forward and presented in Appendix A.

Theorem 1. If a given solution / varies smoothly and if discrete values of / are specified at each node, then the
least-squares finite difference procedure given by Eq. (6) approximates the nth derivative of /, for n6 l, to
order hl�ðn�1Þ, with terms up to lth degree retained in the truncated Taylor series given in Eq. (2).

It is well known that the Euler equations of gas dynamics are hyperbolic and have distinct directions of

information propagation. The least-squares procedure described in this section does not take into account

the hyperbolicity of the Euler equations and therefore the numerical scheme based on this procedure can be

expected to be unstable. One of the ways to overcome this problem is to enforce upwinding in the numerical

procedure. In the subsequent sections we discuss in detail the upwind implementations of the least-squares

finite difference procedure.
3. Least-squares finite difference method based on flux vector splitting

Flux vector splitting [29] and flux difference splitting [26] are two well-established strategies for enforcing

upwinding while obtaining solutions to Euler equations numerically. In this section we present the use of

the least-squares finite difference procedure in conjunction with flux vector splitting strategy. For this

purpose we consider 1D Euler equations given by

oU

ot
þ of

ox
¼ 0: ð7Þ

The 1D grid used for the computation are presented in Fig. 2. Note that the grid points are not uni-

formly placed. In the flux vector splitting schemes, the flux vector f is split into a positive part fþ and a

negative part f�. This is given by

f ¼ fþ þ f�: ð8Þ
Fig. 2. Typical 1D grid distribution.
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The positive flux is said to correspond to the right running waves and the negative flux is said to correspond

to the left running waves. Using the split fluxes the 1D Euler equations is recast as

oU

ot
þ ofþ

ox
þ of�

ox
¼ 0: ð9Þ

Now, obtaining an upwind least-squares scheme for such an equation is straight forward. The least-

squares approximation to the derivatives of positive fluxes is obtained making use of a left stencil of grid

points �Lo� and those of the negative fluxes is obtained from a right stencil of grid points �Ro.� This is pic-
torially represented in Fig. 2. Using a linear least-squares fit, the following expressions are obtained for the

split flux derivatives:

ofþ

ox
¼
P

i2L0 Df
þ
i DxiP

i2L0 Dx
2
i

;

of�

ox
¼
P

i2R0 Df
�
i DxiP

i2R0 Dx
2
i

:

ð10Þ

The least-squares kinetic upwind method (LSKUM) is obtained based on a procedure exactly similar to the

one described above, but starting from the Boltzmann equation of the kinetic theory of gases. The readers

are referred to [12] for further details.
4. Upwind least-squares finite difference method

In this section we introduce the new methodology as applied to 1D flows. Consider the 1D grid presented

in Fig. 3. At the heart of the present methodology is the calculation of an upwind flux at a fictitious in-

terface I associated with the neighboring node i (in line with the cell vertex finite volume schemes) and use

this flux in the least-squares formula. Simply stated, for a linear least-squares fit, the expression approxi-

mating the flux derivative at o reads

fx0 ¼
P

i DFIDxIP
i Dx

2
I

; ð11Þ

with Dð�ÞI ¼ ð�ÞI � ð�Þ0. In the above formula FI represents the upwind flux calculated at the fictitious in-
terface whose coordinate is given by xI . The new upwind method differs from the method described in
Section 3 in two ways. First, it makes use of the upwind fluxes computed at fictitious interface in the least-

squares formula and not the nodal values of the fluxes. The second and more important difference is that it

makes use of a global stencil of grid points and not a one sided upwind stencil. This feature on one hand is

expected to enhance the accuracy of computation because a smaller stencil of grid points is used compared

to the earlier framework, while at the same time considerably reducing the effort required in book keeping.

Also, because of the fact that the present strategy does not require a one sided upwind stencil of grid points,
Fig. 3. Use of fictitious interface in the case of 1D problem.
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the difficulty in locating the physically relevant neighbors for a given node, particularly near the domain

boundaries is completely avoided. In fact this can be a major issue in the flux vector splitting implemen-

tation described in the previous section.

Now we demonstrate that the present framework leads to an upwind scheme. This is done based on the

theory of Flux difference splitting schemes [26] and later generalized to all upwind schemes. At any given

fictitious interface a left state L and a right state R can be defined based on the state variables at corre-

sponding nodes. Using a suitable linearisation procedure the flux difference DF ¼ FR � FL can be split into a
positive part DF þ and a negative part DF � as follows:

DF ¼ DF þ þ DF �: ð12Þ

The flux difference is split in such a way that DF þ gets its contribution from the right running waves and

DF � gets its contribution from the left running waves. The interfacial flux in such a case is given by

FI ¼ FL þ DF �; FI ¼ FR � DF þ: ð13Þ

Very often, in finite volume framework, an average of the above two expressions is made use of in

the determination of the interfacial flux. This clearly demonstrates that an upwind flux difference be-

tween any �fictitious interface� and node o can be determined using a suitable linearisation procedure.
Such a flux difference when applied in the least-squares formula for fxo , as in Eq. (11), will lead to an
upwind least-squares finite difference method (LSFD-U). It is not necessary that such a flux difference

should be determined using an explicit use of a linearisation procedure adopted in flux difference

splitting schemes. In fact, the flux FI at the fictitious interface can be determined using any upwind flux
formula and the flux difference DFI thus determined would correspond to some hypothetical linearisation
step.
5. LSFD-U in 2D

In Section 2 we have already discussed the solution to 2D Euler equations using a least-squares-based

update procedure. We had also remarked that such a procedure using a global stencil of grid points,

disregarding the hyperbolicity of the Euler equations, can result in an unstable scheme. Here, we extend the

idea presented in the previous section to 2D computation.

Consider the 2D Euler equation presented in Eq. (1). A typical 2D cluster of grid points used in LSFD-U

is presented in Fig. 4. The state update at o requires discrete approximation to the spatial derivatives fx and
gy at o. In order to determine this using the upwind least-squares finite difference method (LSFD-U), similar

to the 1D procedure discussed in Section 4, we introduce a fictitious interface I associated with the neighbor

i of the node o. Let D~rrI ¼ ðDxI ;DyIÞ represent the vector ~OOI and bnInI ¼ ðnxI ; nyI Þ represent the unit vector
along ~OOI . The directional flux F" along ~OOI is given by

F" ¼ fnxI þ gnyI : ð14Þ

The interfacial flux F"I can be determined using any upwind scheme. A k-exact reconstruction procedure

(refer Appendix B) is employed to determine the left and right states at the fictitious interface and an

upwind flux formula is used to determine the interfacial flux F"I . The flux difference associated with the
neighbor i is given by

DF"I ¼ F"I � F"o: ð15Þ

Now, the task at hand is to recover the gradient of 2D fluxes r~ffo and r~ggo from the many direc-
tional flux difference terms, each of which are essentially uni-dimensional. Expanding the interfacial flux
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using a truncated Taylor series, we have the following estimate for the flux difference term given in

Eq. (15):

DF e"I ¼
1

jD~rrI j
Xl
q¼1

Xq
m¼0

q
m

� �
oqf

oxq�m oym
Dxq�mþ1I DymI

q!

"
þ
Xl
q¼1

Xq
m¼0

q
m

� �
oqg

oxq�m oym
Dxq�mI Dymþ1I

q!

#
: ð16Þ

Eq. (16) can be rewritten as

DF e"I ¼
1

jD~rrI j
Xl
q¼1

oqf
oxq

Dxqþ1I

q!

"
þ
Xq�1
m¼0

q

mþ 1

� �
oqf

oxq�ðmþ1Þ oymþ1



þ

q

m

� �
oqg

oxq�m oym

�
Dxq�mI Dymþ1I

q!

þ oqg
oyq

Dyqþ1I

q!

#
: ð17Þ

Eq. (17) along with Eq. (15) forms an over determined system of equations in which the unknowns are flux

derivatives or their sums. Now we solve for the unknowns using the least-squares procedure. The flux
derivatives fx and gy appearing in the conservation laws form a part of the solution of the least-squares

problem. Using those flux derivatives, the state at o can be updated using a suitable time integration

procedure.

The least-squares problem is described below. We define vectors kq and deq as follows:

kq ¼
1

q!
Dxqþ1I DxqIDyI . . . Dyqþ1I

� 
; ð18Þ
deq ¼ oqf
oxq

� �e
q oqf

oxq�1 oy þ
oqg
oxq

� �e
. . . oqg

oyq

� �eh iT
: ð19Þ

In Eq. (19) superscript e over the derivatives are included to indicate that they are numerically estimated

values and are not exact. Using Eqs. (18) and (19), Eq. (17) can be recast as

DF e"I ¼
1

jDrI j
Xl
q¼1

kq � deq: ð20Þ
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Now defining an error EI

EI ¼ DF"I
�

� DF e"I
�
jD~rrI j ð21Þ

and minimizing
P

I E
2
I with respect to the components of d

e
p, we have the following set of ðp þ 2Þ equations

for any given p:X
I

EIk
T
p ¼ 0 for 16 p6 l: ð22Þ

In total for all p we have lðlþ 5Þ=2 equations and an equal number of unknowns. The system can be cast as
ADe

F ¼ B: ð23Þ

The block elements of A given by Apq is a matrix of dimension ðp þ 2Þ 	 ðqþ 2Þ and is given by

Apq ¼
1

p!q!

P
Dxpþqþ2I . . . . . . . . . . . .P

Dxpþqþ1I DyI
P

DxpþqI Dy2I . . . . . . . . .

..

. ..
. ..

. ..
. ..

.

..

. ..
. ..

. ..
. ..

.P
Dxqþ1I Dypþ1I

P
DxqIDy

pþ2
I . . . . . .

P
Dypþqþ2I

26666664

37777775: ð24Þ

The components of De
F and B represent vectors of dimension ðp þ 2Þ and are given by

De
F ¼ de

T

1 de
T

2 � � � de
T

l

h iT
; ð25Þ
B ¼ bT1 bT2 � � � bTl
� T

; ð26Þ

where bp ¼
P

I DF"I jD~rrI jk
T
p . It is required to solve the system given in Eq. (23) to update the state at any

given node. The fact that A is a symmetric geometric matrix, which can be inverted at a preprocessing stage

itself, should be exploited in the practical determination of flux derivatives fx and gy to required order of

accuracy.

5.1. Order of accuracy of LSFD-U

One of the important differences between the present least-squares (LSFD-U) framework and the

conventional least-squares framework (presented in Section 2) is that the present framework makes use of
the upwind fluxes computed at the fictitious interface I in contrast to the nodal fluxes used in the con-

ventional framework. This is done in order to enforce upwinding. As can be clearly seen, the order of

accuracy to which the flux derivatives fxo and gyo are estimated depends upon, (i) accuracy to which the

interfacial flux is estimated (this depends upon the reconstruction procedure described in Appendix B) and

(ii) accuracy of the least-squares procedure itself. The following theorem states the order of accuracy of

LSFD-U [2,6].

Theorem 2. If a k-exact reconstruction procedure is employed to determine the directional flux F" at the
fictitious interface and if a truncated Taylor series of degree l given by Eq. (17) is used in the least-squares
procedure, then the pth derivatives of the fluxes, for p6 l, are determined to Oðhðlþ1Þ�pÞ for kP l.

Proof. In order to prove Theorem 2, to start with, we discuss the order of accuracy least-squares procedure

and then discuss its relation to the accuracy associated with the reconstruction procedure.
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From Eq. (26) we have

bp ¼
X
I

DF"I jD~rrI jkTP : ð27Þ

Expanding DF"I appearing in Eq. (27) by Taylor series, we have

bp ¼
X
I

X1
q¼1

kq � dq

" #
kTp ; ð28Þ

with

dq ¼ oqf
oxq q oqf

oxq�1 oy þ
oqg
oxq . . . oqg

oyq

h iT
: ð29Þ

Note that the components of vector deq represent the numerical estimates to the flux derivatives, the

components of vector dq represent the exact flux derivatives. The Eq. (28) can be recast as

bp ¼
X
I

Xl
q¼1

kq � dq

" #
kTp þ

X
I

X1
m¼1

klþm � dlþm

" #
kTp : ð30Þ

The above equation cast in matrix form reads

B ¼ ADF 1 þ CDF 2: ð31Þ

The vectors DF 1 and DF 2 are similar to De
F defined in Eq. (25) and are given by

DF 1 ¼ dT1 dT2 . . . dTl
� T

;

DF 2 ¼ dTlþ1 dTlþ2 . . . dT1
� T

:
ð32Þ

The block elements Cpm of matrix C are defined exactly similar to Apq given in Eq. (24). Introducing Eq.
(31) in (23) we have

De
F ¼ DF 1 þ EDF 2; ð33Þ

where E ¼ A�1C. With ðApqÞ�1 representing the block element constituting A�1 and noting that entries in

Apq � Oðhpþqþ2Þ and Apq ¼ ATpq, we have the entries in ðApqÞ�1 � Oðh�ðpþqþ2ÞÞ. Also, the entries in
Cpm � OðhpþðlþmÞþ2Þ. The leading truncation error corresponds to the case m ¼ 1. This gives

dep ¼ dp þOðhðlþ1Þ�pÞ: ð34Þ

Thus we see that the least-squares procedure estimates the pth derivatives of the fluxes to Oðhðlþ1Þ�pÞ, if
exact values of the directional fluxes at the fictitious interface are available. If we represent the directional

flux at the fictitious interface obtained using an upwind flux formula by F n"I (where superscript n stands for
the numerical estimate), we have for a k-exact reconstruction procedure,

DF n"I ¼ DF"I þOðhkþ1Þ: ð35Þ

Because of the approximation associated with the determination of the interfacial flux F"I , Eq. (34) gets
modified as

dep ¼ dp þ T1 þ T2; ð36Þ

where T1 � Oðhðlþ1Þ�pÞ and T2 � Oðhðkþ1Þ�pÞ. �
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Remark 1. The case p ¼ 1, corresponding to the first derivatives, is of interest to us and we have for
kP l

de1 ¼ d1 þOðhlÞ:

Therefore we clearly see that the LSFD-U procedure demands that kP l, in order to retain the accuracy of
the least-squares formula and we have to at least choose 1-exact (linear) reconstruction procedure for the

LSFD-U scheme to be consistent.

Remark 2. The use of weights wi � 1=dnoi, where doi ¼ ½ðxo � xiÞ2þ ðyo � yiÞ2�1=2 in the least-squares proce-
dure, does not alter any of the arguments pertaining to the accuracy of the LSFD-U procedure.

With respect to the first remark made above, it should be mentioned that it is indeed possible to con-

struct a LSFD-U procedure corrected for consistency employing the nodal values of the fluxes themselves.

This leads to many interesting possibilities, including its utility in implicit LSFD-U and limiting, the details
of which are not of direct consequence to the subject matter presented in this paper and therefore would be

presented elsewhere.

5.2. Variants of LSFD-U

In this section we consider two useful variants of LSFD-U based on a linear least-squares fit. For a linear

fit, Eq. (17) becomes

DF e"I ¼
1

D~rrI

of
ox

Dx2I

�
þ of

oy

�
þ og

ox

�
DxIDyI þ

og
oy

Dy2I

�
: ð37Þ

The least-squares minimisation procedure results in Eq. (23) which in the present case is given byP
Dx4I

P
Dx3IDyI

P
Dx2IDy

2
IP

Dx3IDyI
P

Dx2IDy
2
I

P
DxIDy3IP

Dx2IDy
2
I

P
DxIDy3I

P
Dy4I

264
375 fxo

fyo þ gxo
gyo

264
375 ¼

P
DFI jD~rrI jDx2IP

DFI jD~rrI jDxIDyIP
DFI jD~rrI jDy2I

264
375: ð38Þ

This LSFD-U procedure can be suitably modified based on physical and mathematical arguments and

this results in the ~qq-variant and the h-variant of the procedure. These are described in the subsequent
section.

5.2.1. ~qq-variant: LSFD-U(~qq)
In this method we locally rotate the co-ordinate in such a way that one of the axes coincides with the

streamline direction (refer to Fig. 5). Now we consider the conservation laws on the new coordinate system.

At any given point o, with respect to the new co-ordinate, the fluxes normal to the stream-wise direction

involve only pressure terms. We expect that the flow in the close vicinity of o would also be dominated by

this feature. It is well known in CFD that the pressure terms are elliptic in nature. In fact, such a coordinate
rotation can be considered as an effective means to separate the convective part of the flux which is hy-

perbolic in nature from the pressure part which is essentially elliptic. Calculations on such rotated coor-

dinates are not uncommon. As examples, we can cite the work of Ghosh and co-workers [11], where the

coordinate rotation is used as a means for reducing dissipation in the scheme, the work of Jameson [13] on

‘‘rotated difference scheme’’ for introducing upwinding in the potential flow calculation and the work of

Levy et al. [15] for obtaining grid independent solution. Such coordinate system permits the use of a global



Fig. 5. Rotated co-ordinate for LSFD-U(~qq).
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stencil of grid points in conjunction with the conventional least-squares procedure, described in Section 2,

in the computation of the derivatives of the flux component normal to the stream-wise direction. That is if ~ff
and ~gg represent the fluxes along new coordinate directions ~xx (the stream-wise direction) and ~yy, respectively,
as a consequence of the ellipticity of pressure terms, r~~gg~ggo can be computed by a conventional least-squares
procedure using a global stencil of grid points. Treating the r~~gg~ggo as known, we define a new flux difference
term in place of the one defined in Eq. (37),

D ~FF"I ¼ DF"I �
1

jD~rrI j
~gg~xxoD~xxID~yyI
�

þ ~gg~yyoD~yy2I
�
: ð39Þ

In the new framework an expression for the estimate of the flux difference D ~FF e"I would read

D ~FF e"I ¼
1

jD~rrI j
~ff~xxoD~xx

2
I

�
þ ~ff~yyoD~xxID~yyI

�
: ð40Þ

Eq. (40) along with (39) defines an overdetermined system of equations with unknowns ~ff~xxo and
~ff ~yyo , which

can be solved using the least-squares procedure.

5.2.2. h-variant: LSFD-U(h)
This method also involves a local rotation of the coordinate. In this case we transform the conservation

equation to the new co-ordinate system. It should be remarked that in the present method we continue to
work with x and y momentum fluxes, but with respect to a local rotated coordinate (~xx; ~yy). On the new co-
ordinate Eq. (37) can be recast as

DF e"I ¼
1

jD~rrI j
~ff~xxoD~xx

2
I

h
þ ~ff~yyo

�
þ ~gg~xxo

�
D~xxID~yyI þ ~gg~yyoD~yy2I

i
: ð41Þ

Now we look for a co-ordinate system where the flux derivative sum ~ff ~yyo þ ~gg~xxo vanishes. It can be easily
shown that a coordinate system rotated at an angel h given by

h ¼ 1
2
tan�1

fy þ gx
fx � gy

� �
ð42Þ
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would satisfy the aforesaid constraint. The derivatives of the fluxes used in the estimation of h are ob-
tained using the conventional least-squares procedure described in Section 2 using a global stencil of grid

points. On the new rotated local co-ordinate it is possible to define modified flux difference, similar to

Eq. (39),

DF e"I ¼ DF"I �
1

jD~rrI j
~ff~yyo

�
þ ~gg~xxo

�
D~xxID~yyI : ð43Þ

In this case the estimate of the modified flux difference D ~FF e"I would read

DF e"I ¼
1

jD~rrI j
~ff~xxoD~xxI

�
þ ~gg~yyoD~yyI

�
: ð44Þ

Eq. (44) along with (43) defines an over determined system of equations with unknowns ~ff~xxo and ~gg~yyo
, which

can be solved using the least-squares procedure. A practical implementation of the h-variant of LSFD-U
procedure, would involve using a numerical estimate for the flux derivative sum ð~ff ~yyo þ ~gg~xxoÞ appearing in Eq.
(43), though this is expected to be very small, and can be obtained using a conventional least-squares

procedure described in Section 2.

It is worthwhile to make the following comments, particularly, in the context of extending the LSFD-

U(h) to 3D computations [2]. The coordinate transformation involved in the present method is essentially a
principal axis transformation well known in the field of continuum mechanics. To demonstrate this we

introduce a second-order tensor of flux derivatives,

Y
ij

¼ 1
2

ofi
oxj

�
þ ofj

oxi

�
:

In the above equation f1; f2 and f3 represent the flux components along the coordinate directions x1, x2 and
x3. It can be easily seen that

Q
represent a symmetric tensor and our interest lies in the computation of

ofi=oxi, the trace of
Q
, which is invariant with respect to rotation of coordinates. We know from the theory

of matrices, for any symmetric tensor there exists an orthogonal set of axes (called principal axes) with

respect to which the tensor may be cast in diagonal form. The orthogonal set of axes are obtained by

solving the eigenvalue problem

Y
ij

 
� kdij

!
nj ¼ 0 ði ¼ 1; 2; 3Þ;

where k represent the principal value and the associated eigenvector represents the principal axis. Therefore
in LSFD-U(h) the job is to locally determine the principal axes, transform the conservation laws to the
principal axis coordinate system and solve the equations on the transformed plane.

5.2.3. Accuracy of the variants of LSFD-U

In Section 5.1 we have already discussed order of accuracy of a general LSFD-U procedure. Based

on the discussions presented in Section 5.1, it is clear that, in the ~qq and h variants of the LSFD-U,
second-order estimates of the modified flux differences (given by Eqs. (39) and (43)) should be used for

the scheme to be consistent. This requires the use of a linear reconstruction procedure in conjunction

with a first order estimate of the flux derivatives appearing in the expression for the modified flux

difference.
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6. Results and discussion

This section presents the results of various computations done using LSFD-U and its variants. These

cases were selected accordingly to test the ability of LSFD-U over wide range of Mach number, ranging

from Low Subsonic (M ¼ 0:1) to High Supersonic (M ¼ 3:0) Mach numbers. Also, various interfacial flux
formulas based on Flux Vector Splitting and Flux Difference Splitting were made use of to show the

flexibility, the LSFD-U procedure offers. The ability of different interfacial flux formulas in handling dif-

ferent flow situations is effectively exploited in the present least-squares computations. In the present
computations, the points required for LSFD-U state update are obtained from unstructured triangulated

grid. This facilitates comparison of LSFD-U results with those of cell-vertex finite volume. It is important

to note that the connectivity used for the LSFD-U procedure is obtained independent of the connectivity

given by the grid generator. This is done at a preprocessor level and is explained below.

6.1. Preprocessor

One of the important components of LSFD-U computation is the use of a preprocessor to generate the

grid data. The least-squares procedure involves inversion of geometric matrices, which have been shown to

be nonsingular in Section 2. In addition, it is also required that these matrices are not ill-conditioned. This

constraint is extremely crucial because the flux derivatives obtained using the least-squares procedure are
directly used in the state update formula. Therefore, the choice of right connectivity for the grid points is

the key to success of any least-squares procedure. In the present case the domain around any given point is

divided into a specified number of sectors (user defined) and the points are included into the connectivity

from each of these sectors based on a proximity criterion. This defines a primary set of neighbours. If the

condition number requirement is not satisfied, a point from a secondary set of neighbours is included into

the connectivity, if it results in a improvement in the condition number of the resulting geometric matrix. A

general guiding principle for the selection of neighbours is to uniformly distribute them around a given

point. This can be understood from the modified equation analysis, the details of which would be presented
elsewhere. Also, it should be remembered that the problems pertaining to the conditioning of the geometric

matrix is also encountered in the case of least-squares-based reconstruction procedure as applied to finite

volume computations [3]. Given the fact that the geometric matrix is positive definite, a simple strategy like

diagonal preconditioning greatly alleviates this problem (S. Nikhil, N. Balakrishnan, A new migratory

memory algorithm (MMA) for implicit finite volume solvers, AIAA J., submitted). Also, it should be

mentioned that an effective search algorithm can become a prerequisite while handling large grid data.

6.2. Boundary condition

The following boundary conditions are used in the present computations:

(1) Strong boundary condition developed by Balakrishnan and Fernandez [4] is used on the solid wall. The

use of such boundary condition developed for cell vertex finite volume schemes is very relevant for
least-squares-based update procedure.

(2) At the far field, free-stream conditions are enforced for supersonic flow and flow induced by a point vortex

of a equivalent strength placed atmid-chord of an airfoil is specified for subsonic and transonic flows [28].

(3) Supersonic inflow and outflow boundary conditions are used for the case of internal flows.

6.3. Validative computations

The point distribution for LSFD-U state update, in the present computations, are obtained from un-

structured triangulated grid [22]. The results from LSFD-U and its variants are compared with that of cell
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vertex finite volume on the same grid. A linear reconstruction of the primitive variable [3,7] in conjunction

with Venkatakrishnan limiter [30] is used throughout. Four-stage Runge–Kutta time stepping is used for

time integration. The convergence is assumed after 6 decades of fall in relative residue. The flow variables in

present computations are nondimensionalized with the free-stream values. The density and velocity are

nondimensionalized with their respective free-stream values. The pressure is nondimensionalized as

p=q1U
2
1. We also make use of an entropy like variable s ¼ p=qc in the contour plots, in order to dem-
Fig. 6. Various grids used in present computations.



Table 1

Test case Grid Numerical flux formula

No. of nodes No. of nodes

on the wall

1. Potential flow past a cylinder (M1 ¼ 0:1) 8052a 200 Roe [26]

2. Transonic flow past NACA 0012 (M1 ¼ 0:85, a ¼ 1:0�) 8913a 198 AUSM [19]

3. Supersonic flow past semi-cylinder (M1 ¼ 3:0) 6921b 120 KFVS [18]

a The far-field¼ 10 chords.
b The far-field¼ 3 radii.
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onstrate the spurious entropy generation by the schemes. The test cases considered, grid details (see Fig. 6)

and the numerical flux formula used are presented in Table 1.

6.3.1. Low subsonic flow over cylinder

In this case flow past a cylinder for a free-stream Mach number of 0.1 is simulated. This is a potential

flow case for which exact solution is available. This case tests the ability of the new algorithm in cap-

turing flow features pertaining to low speed flows. The Cp plot and the pressure contours obtained using
various algorithms are presented in Figs. 7 and 8, respectively. It should be mentioned that the top–
bottom asymmetry (though very minimal) as observed in the Cp plot is a consequence of the asymmetry
of the unstructured mesh employed for the computation. Also, the Cp plot and the pressure contours
reveal that the left–right symmetry of the pressure field is reproduced remarkably well. In fact, there is a

marginal loss of left–right symmetry in the Mach contour (not shown) due to entropy layer generated at

wall.

6.3.2. Transonic flow over NACA 0012

In this case transonic flow (M1 ¼ 0:85) past NACA 0012 airfoil at an angle of attack of 1� is simulated.
This is a standard AGARD [1] test case in the transonic regime. The CL and CD obtained using LSFD-U
Fig. 7. Cp plot for flow past cylinder at M¼ 0.1 and a ¼ 0�.



Fig. 8. Pressure contours. Subsonic flow past cylinder M1 ¼ 0:1.
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and its variants compared with those obtained using cell vertex finite volume scheme and the AGARD

values in Table 2. The Mach contours, entropy contours and Cp plots are presented in Figs. 9–11, re-
spectively. The results clearly bring out the fact that the jumps across the top and bottom shocks, their

locations and wall pressure distributions are all captured accurately by the present framework. In Table 3

we present the theoretical and computational entropy jump across shock on the top wall. The theoretical

jump is calculated using normal shock relation for the upstream Mach number before the shock on the top
wall. The jumps computed are within and around 5% of theoretical value. Accurate computation of exact

jump across the shock is related to the conservation property of the numerical scheme. The percentage

errors reported in Table 3 is a quantitative evidence in this regard. It should be emphasized that the results

presented clearly reveal the ability of LSFD-U in retaining the nicer features of the AUSM flux formula as

applied to finite volume computations.
Table 2

CL and CD values for various method using AUSM flux splitting

LSFD-U LSFD-U(h) LSFD-U(~qq) Finite volume AGARD

CL 0.3881 0.3611 0.3746 0.3912 0.330–0.389

CD 0.0556 0.0523 0.0566 0.0555 0.0464–0.0590



Fig. 9. Mach contours. Transonic flow past NACA 0012 M1 ¼ 0:85, a ¼ 1�.
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6.3.3. High supersonic flow over semi-cylinder

Results pertaining to supersonic flow (M1 ¼ 3:0) past a semi-cylinder are presented here. This case tests
the robustness of the algorithm. The shock standoff distance in this case can be calculated using Ambrosio

and Wortman [9] correlation,

D
R
¼ 0:386 expð4:67=M2Þ:

The total pressure variation along the symmetry line as obtained from the computation is compared with

the exact values in Fig. 13. In plotting the exact total pressure variation the shock standoff distance, as

obtained from the above formula, is made use of. The pressure contours obtained using LSFD-U, LSFD-
U(h) and cell vertex finite volume procedures are presented in Fig. 12. The results obtained demonstrate
the robustness of the present framework and are very encouraging. It should be stated that it was not

possible to obtain results using the ~qq-variant. As we had indicated earlier, in the case of LSFD-U(~qq)
numerical dissipation to ensure stability of the time integration procedure is brought in through the

upwinding of the stream-wise fluxes. In flows, such as the one considered in this test case, where the fluid

is brought rapidly to rest close to the stagnation point, the numerical dissipation resulting from the

upwinding of the stream-wise derivatives is not adequate to stabilize the scheme and this results in lack of

robustness.



Fig. 11. Cp plot. Transonic flow past NACA 0012 M1 ¼ 0:85, a ¼ 1�.

Fig. 10. Entropy contour. Transonic flow past NACA 0012 M1 ¼ 0:85, a ¼ 1�.

Table 3

Wall entropy jump across the top normal shock

M1 DScomp DStheo % relative error

LSFD-U 1.4392 0.0220 0.0214 2.80

LSFD-U(h) 1.4351 0.0198 0.0209 5.26

LSFD-U(~qq) 1.4623 0.0246 0.0242 1.65

Finite volume 1.4373 0.0220 0.0212 3.58
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Fig. 13. Symmetry line total pressure ratio variation. M1 ¼ 3:0 flow past semi-cylinder.

Fig. 12. Pressure contours. High supersonic flow past semi-cylinder M1 ¼ 3:0.
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6.4. Conservation study

One of the very important aspect of numerical schemes based on a generalized finite difference procedure
like LSFD-U is that it is difficult to prove the conservation of the scheme as in the case of finite volume
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procedure. In order to empirically demonstrate the conservation of the LSFD-U framework, two test

problems were chosen. They are:

(1) Supersonic flow past a 10.75� ramp in a channel.
(2) Unsteady shock tube problem cast in two dimensions.

The conservation is demonstrated by systematically employing a series of numerical experiments.

Starting from a coarse triangular grid, finer grids are obtained by successive refinement wherein each tri-

angle is divided into four triangles. The LSFD-U state update is operated on the resulting arbitrary point

distribution.
Case 1. Supersonic flow past ramp in a channel. This test case, in contrast to the external flow cases seen in

the previous sections, is an ideal candidate for studying the conservation property of a numerical proce-

dure. In this case, conservation demands that the mass inflow into the channel should be same as the

outflow at steady state. Any difference in the mass flow can be indicative of the numerical source/sink
Fig. 14. Pressure contours. Supersonic (Minlet ¼ 2:0) flow past 10:75� ramp in a channel for 4 levels of grids.

Fig. 15. Wall Mach number distribution obtained on various levels of grid refinement.



Fig. 16. Estimate of conservation for various levels of refinements.
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associated with the algorithm. We employ this difference
P
as an indicator of loss of conservation of the

numerical procedure. It should be remarked that in the case of finite volume schemes,
P
would be com-

parable to the residue defined on mass (at the time of declaring convergence), because of the telescopic

collapse of the flux integral on the volume interface. The logarithmic value of
P
is plotted against log d,

where d is mean point spacing, in Fig. 16. The slope of the best line fit (solid line) for LSFD-U revealsX
’ OðdÞ as d ! 0:

The above result amply demonstrates the conservation property of the LSFD-U method, as the value of
P

(indicative of loss in conservation) decays to zero at least as fast as the d does. An interesting comment with
regard to the use of cell vertex finite volume procedure in conjunction with a nonconservative strong wall
boundary treatment [4] can be made here. In such a case the mass balance

P
obtained using the finite

volume computation matches with that obtained using the LSFD-U procedure, as depicted in Fig. 16. At

the same time, the use of finite volume scheme with conservative mirror boundary condition on the wall

yields
P
comparable to the residue at the time of declaring convergence. In Fig. 14, the pressure contours

obtained using four different grids, resulting from a successive refinement procedure described above, are

presented. It can be clearly seen that the flow features captured on the coarser grid become sharper on the

finer ones. In Fig. 15 the computed wall Mach numbers are compared with the theoretical values, in which

the theoretical values are plotted only up to the reflection of oblique shock on the top and expansion on the
bottom walls, respectively. These results clearly demonstrate, both qualitatively and quantitatively, the

accuracy of LSFD-U.

In addition to conservation, we demonstrate the robustness of the present methodology in handling grid

distortions by the use of random grid. The grid shown in Fig. 17 is generated by placing points randomly in

both the coordinate directions in such a way that it is possible to recover regular triangles from the points

for cell vertex finite volume computations. The Mach contours for both LSFD-U and cell vertex finite

volume procedure, presented in Fig. 17, show good matching. The computed wall Mach numbers are

compared with the exact values in Fig. 18. The figure amply demonstrates the ability of LSFD-U in
capturing shocks of right strength at right locations apart from other continuous flow features.



Fig. 17. Grid and Mach contours obtained on a random point distribution (2844 pts.)

Fig. 18. Wall Mach number distribution obtained on the random grid.
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Case 2. Sod’s shock tube problem [27]. For an unsteady flow case, accurate computation of shock speed

requires satisfaction of conservation property by the numerical scheme. Having demonstrated the con-

servation property of LSFD-U for a steady problem in previous section we take up the unsteady case in

present. For this purpose the standard Sod�s shock tube problem was cast in two dimensions and solved on
an arbitrary distribution of points obtained using an unstructured mesh generator. Like in previous case,

here too the finer grids were obtained from coarser grids by successive refinement. The density contours at

time t ¼ 7:5	 10�4, obtained using LSFD-U on different grids, are compared with the cell vertex finite
volume (shown only for first grid, i.e., 6685 pts) solution in Fig. 19. From the figure one can clearly see the

three features namely, shock, contact discontinuity and expansion are captured accurately. The mid-section

density variation from present computations are plotted with analytical solution in Fig. 20, to reinforce the

above observation. The features, as seen from Figs. 19 and 20, approach the exact solution with successive

grid refinements. The logarithm of L2 norm of error, as compared to the theoretical solution, of mid-section
density variation is plotted against the logarithm of mean point spacing in Fig. 21. Again, from the slope of

the best line fit, it is observed



Fig. 19. Density contours. Sod�s shock tube problem in 2D.

Fig. 20. Mid-section density plot. Sod�s shock tube problem in 2D.
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Fig. 21. Mid-section L2 norm of error for various levels of grid refinement.

Fig. 22. Sod�s shock tube problem in 2D on random points distribution, 3599 pts. � Shown with points distribution in background.
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jjejj2 ’ OðdÞ as d ! 0:

It is similar to the observation made for steady case in previous section. The L2 norm of error decreasing as
d in the limit d ! 0 indicates the computed solution approaches the exact in the limit.
Similar to the previous case, we again choose to demonstrate the robustness of LSFD-U framework for

an unsteady flow problem, using a randomly generated grid shown in Fig. 22. The density contours, in Fig.
22, clearly demonstrates the ability of present framework to capture various flow features. The midsection



Fig. 23. Mid-section density plot. Sod�s shock tube problem in 2D on random points distribution.
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density distribution compared with exact solution, in Fig. 23, amply demonstrates the strength of the

present framework to operate on highly distorted grids. The degree of grid distortion involved in this

computation is brought out in Fig. 22, where an enlarged view of the left bottom corner of the compu-

tational domain is presented. It should be remarked here that the authors were unable to obtain a finite

volume solution on this grid.
7. Conclusions

A new upwind generalized finite difference scheme, LSFD-U has been developed. This scheme has the

flexibility of being used on any type of grids or even a random distribution of points. It falls under the

class of Meshless Schemes. This new framework makes use of global stencil of points compared to other

methods, like LSKUM, which uses one sided upwind stencil of grid points for state update. This is one
of the important advantages of LSFD-U. Such a stencil, being more compact, is expected to enhance the

accuracy. A means to construct a LSFD-U procedure of specified order of accuracy has been presented.

It is demonstrated that for a first-order estimation of flux derivatives fx and gy for state update at any

node, we need to have at least 1-exact reconstruction for LSFD-U to be consistent. The LSFD-U and its

variants have been tested over a wide range of Mach numbers and their solutions compare well with

those obtained using cell vertex finite volume employing a linear reconstruction procedure. Also, in these

computations, the flexibility of LSFD-U in using various upwind flux formula (both Flux Vector

Splitting and Flux Difference Splitting) has been demonstrated. Though it is theoretically difficult to
prove the conservation of schemes based on generalized finite difference procedure, in present case we

choose an empirical approach to demonstrate the conservation of LSFD-U. Numerical experiments

performed for the steady internal flow case and the unsteady flow problem are clearly indicative of the

conservation of the present least-squares procedure. It should also be remarked that the computational
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effort involved in LSFD-U state update is comparable with that of cell vertex finite volume update, in all

the cases considered in this paper.
Appendix A

Proof of Theorem 1. Here we prove the order of accuracy of a general least-squares procedure described

in Section 2, in particular for a 1D case. The 2D generalisation of this proof follows exactly the same lines

as the procedure described for LSFD-U in Section 5.1.

Suppose that discrete values of function /ðxÞ are available at nodes of the computational domain.
Consider a node i in the neighbourhood of o. The truncated Taylor series estimate of /i is given by

/e
i ¼ /o þ

Xl
q¼1

Dxqi
q!
dq/
dxq

: ðA:1Þ

Defining an associated error Ei ¼ /i � /e
i and minimizing the Euclidean norm of the error results inX

i

Xl
q¼1

Dxpi
p!

Dxqi
q!

dq/
dxq

� �e
¼
X
i

D/i
Dxpi
p!

for p ¼ 1 to l: ðA:2Þ

The superscript e for the derivatives indicate that they are approximate numerical estimates. Eq. (A.2)

represents a system of l equations with l unknowns and can be recast as

ADe
/ ¼ B; ðA:3Þ

with

Apq ¼
X
i

Dxpi
p!

Dxqi
q!

;

De
/ ¼ d/

dx

����e d2/dx2
����e � � � dl/dxl

����e
" #T

;

bp ¼
X
i

D/i
Dxpi
p!

:

In the above equation, Apq and bp represent the elements of matrix A and vector B, respectively, and D
e
/ is

the vector of estimated derivatives of /. Order of accuracy to which the elements of De
/ are determined is

obtained by expanding D/i appearing in bp in Taylor series. We have

bp ¼
X
i

Xl
q¼1

Dxqi
q!
dq/
dxq

(
þ
X1
m¼1

Dxlþmi

ðlþ mÞ!
dlþm/
dxlþm

)
Dxpi
p!

: ðA:4Þ

Eq. (A.4) can be recast as

B ¼ AD/;1 þ CD/;2; ðA:5Þ

with

Cpm ¼
X
i

Dxpi
p!

DxðlþmÞ

ðlþ mÞ! ;
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D/;1 ¼ d/
dx

d2/
dx2 � � � dl/

dxl

h iT
and

D/;2 ¼ dlþ1/
dxlþ1

dlþ2/
dxlþ2 � � � d1/

dx1

h iT
:

Introducing (A.5) in (A.3), we have

ADe
/ ¼ AD/;1 þ CD/;2:

Premultiplying by A�1 we have,

De
/ ¼ D/;1 þ ED/;2;

with E ¼ A�1C and Epm an element of matrix E is given by, Epm ¼
Pl

q¼1ðApqÞ
�1Cqm where ðApqÞ�1 represents

the elements of A�1. The order of accuracy to which dp/=dxpje is determined depends upon the order of
leading truncation error term, which corresponds to the case m ¼ 1. Noting that A is a symmetric matrix,
with Apq � OðhpþqÞ; ðApqÞ�1 � Oðh�ðpþqÞÞ and Cpm � OðhpþlþmÞ, we have

dp/
dxp

����e ¼ dp/dxp þOðhlþ1�pÞ: �
Appendix B

The reconstruction algorithm employed in this method is similar to the procedure employed in the case

of cell vertex finite volume computations [3]. The procedure is briefly presented here for the sake of

completeness.

Assume that discrete solution value /ðx; yÞ is available at any node o. We have

/o ¼ /ð~rroÞ:

The objective of the reconstruction procedure is to represent the solution variation in the neighbourhood of

o (i.e., is to reconstruct the information lost during a discrete state update) by a polynomial function

/k
oð~rrÞof degree k, satisfying the following constraints:
(1) The polynomial should take the discrete solution value /o at node, i.e.,

/k
oð~rroÞ ¼ /o:

(2) The polynomial should represent polynomial functions of degree l6 k exactly.
In the present work a least-squares-based linear reconstruction procedure has been employed. As per this

procedure, the solution variation in the neighbourhood of o is given by

/1o ¼ /o þr/o � D~rr;

where D~rr ¼~rr �~rro and the least-squares formula for the gradients are given by

/xo ¼
kDyk2ðDx;D/Þ � ðDx;DyÞðDy;D/Þ

kDxk2kDyk2 � ðDx;DyÞ2
;
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/yo ¼
kDxk2ðDy;D/Þ � ðDx;DyÞðDx;D/Þ

kDxk2kDyk2 � ðDx;DyÞ2
;

with Dð�Þ ¼ ð�Þi � ð�Þo, k � k
2
representing the Euclidean norm and (a; b) representing the inner product of

two vector quantities. It can be easily seen that such a polynomial exactly recovers both the constant state
and a linear function.
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